
 93-82141
Integration of Domain and Resource-Based Reasoning

for Real-Time Control in Dynamic Environments*

Keith Morgan

Kenneth R. Whitebread

Michael Kendus

GE Advanced Technology Laboratories

Moorestown, NJ

Andrew S. Cromarty

Dislributed Systems Technology

Palo Alto, CA and Tully, NY

Abstract

This paper describes a real-time software con-
troller that successfully integrates domain-based
and resource-based control reasoning to perform
task execution in a dynamically changing envi-
ronment. The design of the controller is based on
the concept of partitioning the process to be con-
trolled into a set of tasks, each of which achieves

some process goal. It is assumed that, in gen-
eral, there are multiple ways (tasks) to achieve
a goal. The controller dynamically determines

current goals and their current criticality, choos-
ing and scheduling tasks to achieve those goals
in the time available. It incorporates rule-based
goal reasoning, a TMS-based criticality propaga-
tion mechanism, and a real-time scheduler. The

controller has been used to build a imowledge-
based situation assessment system that formed
a major component of a real-time, distributed,

cooperative problem solving system built under
DARPA contract. It is also being employed in
other applications now in progress.

1 Background

The results reported in this paper were derived in the course
of developing the Situation Assessment (SA) component
of the DARPA Sub_ Operational Automation System
(SOAS). The SOAS project explored the application of ad-
vanced automation techniques such as AI to the support
of the commander of m altack mbnuadne. It produced a
large-scale distributed software system whose components
provided support in such functiom as tactical planning and
situation assessment.

To control the course-depth-speed profile of the vessel
(referred to as "ownship'), manage its staff, and allocate
its weapons and other resomr, es, the Commanding Ofli-
cer (CO) must maintain a timely and accurate understand-
ing of the external situation. SA's responsibility is to con-
struct and maintain, in coordination with a human opera-
mr, a scene assessment in real time. The scene is gener-

ated by processing and interpreting sensor data (primarily

"Sponsored by Defense Advanced Research Projects
Agency, DARPA ASTO/STP, Submarine Operational Au-
tomation System ARPA Order No.6661/50, Issued by
DARPAJCMO under Contract MDA972-90-C-O005

321

sonar data)tocreatea representation of the submarine's

physical environment and the various man-made objects
(ships, other submarines, etc., which are known as con-
tacts) within range of the sub's sensors.

Knowledge-based processing is used in SA due to the

voluminous amount of highly uncertain and incomplete in-
formation it must intelligently analyze to achieve its goals.
Among the key problems that had to be solved in the de-

sign and implementation of SA was the development of
an effective method of domain-based real-time control of
problem solving. This paper describes the SA control archi-

tecture which was developed to meet SA's control require-
ments. By treating problem solving control as a reasoning
problem based on both domain knowledge and knowledge
of computing resources, the SA control (called the "Meta-
controller" succeeded in managing the complex task of sit-
uation assessment in real time.

2 Statement of the Problem

The technical challenges to effective problem-solving con-
trol for SA stem from four major factors:

• The system must operate in a real-time, dynamic en-
viroumeaL

• The system must select the most useful assessment
tasks under current circumstances.

• The system must maintain consistency of its goals and
actions (both current and planned) as new data alters
perception of the situation.

• The system must support cooperative problem-
solving (with its human operator and with other com-
ponents).

This section explains each of these requirements and
their implications for the design of the Metacontroller.

The submarine situation assessment problem is inher-
ently real-time. Ownship must respond to external events
such as possible collisions with other yessels. The CO must

also consider time-constraints imposed by external circum-
stances in planning and executing actions which he initiates
such as carrying out an attack. Since assessment is a pre-
requisite to sensible and effective vessel management and
target prosecution, the time constraints of the larger com-
mand problem devolve on to assessment as well.

Because of the volume of incoming sensor data, the
number of assessment tasks which could sensibly be pur-
sued at any time is typically too large to allow execution

of all such tasks. This information overload is one of the

reasons for developing an assessment aid for the submarine
command staff in the first place. The Metacontroller must
therefore guide its own assessment activities on a moment-
to-moment timesca]e based on the expected impact of pur-
suing one vs. another assessment task. For example, an ex-
plicit decision must be made concerning whether the next
few milliseconds of computing time should be spent on

pursuing possible contact correlations or whether a popup
contact is a colfision threat. Such decisions depend both
on time constraints (if there there is a collision threat, is it
imminentT) and on domain knowledge (is further analysis
of a given contact likely to be of importance to ownship's
mission or safety7).

The data which drive situation assessment are often

noisy, unreliable, incomplete, unavailable, evolving, or
even conflicting, due to sensor limitations, operator limi-
tations, inherent sensor error, physical vessel limitations,

and data processing limitations. The Metacontroller must
therefore be capable of adapting its evaluation of the prior-
ity of assessment tasks as new sensor input is received.

SA is conceived as an operator-controlled component of
a distributed problem solving system. It therefore cannot
behave autonomously even though it is expected to intel-
ligently conth31 its own functions. Thus, SA control must
accept and integrate with its self-derived problem-solving
goals both directives from the operator and requests from

other intelligent components.
The major challenge in designing the Metacontroller

was the s/mu/taneous satisfaction of these requirements

by the design. Each of these topics has been researched,
and treated in isolation. For example, methods for rea-
soning about task time constraints have been studied, but
our application required that such reasoning be integrated
with domain-based reasoning (essentially expert reason-

ing) since the choice of which assessment tasks to pursue
depends both on time constraints and on knowledge about
which elements of the current situation are operationally
most important.

3 Approach

The approach treats control of the situation assessment rea-

soning process as itself a reasoning process carried on at a
metalevel with respect to reasoning done on the domain.

The assessment process is conceived as a set of domain-
level reasoning tasks (e.g., the task of determining whether
a given contact poses a collision thre_). The control of that
process is conceived of as a reasoning task whose purpose
is to decide which domain- level task to perform next The

control reasoning process reasons about goals and tasks.
Its function is to determine current system goals, their crit-
icality, and which tasks should be performed given current
goals. The reasoning process takes into accounttheeffects
of new input data, time constraints, and estimates of the
time required for task completion.

We found that this control model could be implemented
using conventional AI techniques for the various functions

required. The following list indicates the methods used and

their purpose:

1. Use domain expert as source of domain-hased control
knowledge. (much of what the expert said was about
control)

2. Divide all functions into tasks supporting goals

3. Use goal-based tasking to perform all system and do-
main functions

4. Use rule-based reasoning to determine current system
goals and tasks

5. Ensure consistency of goals (hence, of the current and
planned course of action) through the use of a truth
maintenance function.

6. Establish deadlines for all real-time tasks and use
these deadlines to schedule the tasks for execution.

7. Trade-off competing real-time tasks according to
deadline and precedence.

8. Trade-offcompeting non-real-time tasks according to
criticality.

The remainder of this section presents a description of
the system.

3.1 Overview of the Control Architecture

The SA component is composed of the Metacontroller and
a set of procedures for performing the domain-level rea-
soning tasks which create an assessment from sensor input
data.

The top-level architecture of the Metacontroller is de-
picted in Figure 1. The principal elemcats of this architec-
ture are Event generation, the Metaplanner, the Scheduler,
the Executor, and the Truth Maintenance System with their
associated data and knowledge bases and queues.

Event Generation signals the controller, when an event
has occurred. An event may occurs when new information
is sent to SA via its communication system, or when SA's
own domain-reasoning infers a tactically significant datum
that could affect SA's control decisions..

The Metaplanner uses expert control knowledge to es-
tablish and modify goals in response to the events signalled
by event generation. It alsocreatestasksfrom events. Ad-
ditionaily, the metaplanner is responsible for establishing
the class of a task (real- or non-real-time) and initialization
of relevant parameters of the task, e.g. its deadline.

The Scheduler produces a total ordering of all tasks in
accordance with the constraints implied by the class and

parameters of the tasks. The scheduler uses a real-time

control policyto schedule a real-time task before a non-
real- time task, regardless of the relative criticality of those
tasks.

The Executor executes the task on the top of the sched-
ule. It is also responsible for collecting run-time statistics
on each ofthetasktoassistinaccuratescheduling offuture
tasks.

The Metacontroller's Truth Maintenance System main-
rains the consistency of the Metaplanner's goal and task
reasoning as new input data is received.

322

SA

Metaplanner

E x O '-m,,. T

Figure i: SA Architecture

The tasks whose execution the MeJacontroller governs
fall into two categories: control procedure and domain
procedures. Dorian procedures perform operations ful.
filling SA's assessment function. For example, a task that
attempts to correlate a newly received sonar tonal with a
known contact is classed as a domain procedure. Control
procedures perform the operations required to implement
the conl_l process itself. For example, a procedure that
reads new messages from an input port is a control proce-
dure. Both domain and control procedures me identified for
execution by the Metaplanner and scheduled by the Sched-
uler for execution. Thus, the Metaconlroller conlrols both
the execution of SA's problem-solving process and its own
behavior as an algorithm.

We now discuss in detail the role of each of the Meta-

controller components.

3.2 Distributed Event Generation

Inbound messages to SA ale received by the Communica-
tions System Interface. The receipt of a message results in
the generation of an SA event, with the type (class) of event
signalled depending on the class of received message.

When the Communications System Interface signals a
message receipt event, it also places the body of the re-
ceived message in the Message InQueue, where it is held
until an appropriate conm31 procedure dequeues and pro-
cesses the message.

Outbound messages are created by individual domain
procedures or control procedures and are passed through

1 the Communications System Interface for forwarding to
other SOAS components.

Peuey

up_atu

3.3 Metaplanner

The Metaplanner can be thought of as a transition function
that maps events and goals into tasks (or goals). Periodi-
cally, events in the event queue are dequened en masse and
processed by the Metaplanner. The Metaplanner employs
a dynamic goal base, the events from the event queue, and
a set of metalevel planning rules (metarules) to select ac-
tions (if any) approlxiate toeach event dequeued from the
Metaplanner Event Queue. The Metaplanner produces sets
of tasks for execution by the Scheduler, based on the cur-
rent set of events, goals, and metarules.

Upon each invocation of the Metaplanner, events are
read from the Event Queue, goals from the goal base,
and metarules relating goals and events to tasks from the
Metarule knowledge base; the Metaplanner then forward
chains exhaustively on the events to determine the full set
of consequent tasks that the events (taken as assertions)
"imply."

Metarules take the form

_ --+ T
where

E is a set of Events de.queued from the Metaplan-
her Event Queue
D is the control Data set, consisting of dynamic,
persistent goals and of conlrol facts. Control
facts are assertions of beliefs currently held about
the domain, for example, "Contact $2 could be a
submarine".
7" is a set of generated tasks

that is, they map event-goal pairs to a corresponding task
to execute. The task may be either a base-level (domain
level) or metalevel (control level) task, and it is through
conlrol level tasks that the goal base is modified and new
goals are established. For example, a metarule might be of
the form, "If event E_ has occurred and we have goal Gj,
then schedule for execution task Tg," where Tg is a task
that inserts a new goal g into the goal base. 1

The Metaplanner forward chains on the events fully un-
til all eligible metarules have fired. Each generated task is
assigned a criticality derived from the goal that motivated
its elaboration. The set of tasks to execute resulting from a
single such Metaplanner invocation are queued and held in
the Scheduler Input Queue; when the closure of the event
set has been computed for this goal and rule set, the Meta-
planner flushes the Event Queue, queues its set of derived
tasks in the Scheduler Input Queue, and expires.

Although events do not live beyond one Metaplanner in-
vocation, metarules and goals are maintained across Meta-

l Note that by requiring goal knowledge base manipula-
tions to occur singly within the context of a task execution
rather than at Metaplanning time, we effectively eliminate
the order-dependent processing ambiguity that could arise
in Metaplanner operations if it were possible to modify the
goal set while it was in active use by the Metaplanner.

323

planner invocations. The metarule and goal knowledge
bases may be modified from time to time by control pro-
cedures as described above. Most such instances of con-

trol procedure execution as well as most executions of do-
main procedures occur because the Metaplanner identifies
the procedures as tasks to be scheduled and executed as
already described. However, as Figure 1 indicates, tasks

may also be submitted for scheduling directly from the Ex-
ecutor. This occurs when an executing task spawns a child
task. Task spawning was implemented as an efficient way
to handle such features as .the establishment of periodic
tasks and partitioning tasks into subtasks. When a task
spawns a child task, the parent may assign any goal to the
child. The assigned goal is added to the goal base if neces-

sary. In practise, most children are assigned the goal of the
parent. Note that task creation of goals and tasks does not
violate the conceptual model already described. The same
effect could have been achieved by instead implementing
tasks which signal an appropriate event instead of directly
spawning a new task. The event could then be processed
with metarules added to the knowledge base for the pur-
pose. The decision to use direct spawning of tasks simply
allowed more effÉcient implementation.

Metaplanning, essentially the process of deciding what
to plan, is an approximate description of the activities en-
gaged in by this, the largest part of the Metacentroller.
Whereas the SA Scheduler actually determines which com-
puting activities SA will engage in during the next pro-
cessing epoch, the SA Metaplanner determines what the
Scheduler will have available as its scheduling alternatives.
Viewed alternatively, the Metaplanner engages in explicit
planning at the metalevel, that is, it employs a knowledge-
based planning technique to determine what sets of tasks
SA should execute as a computational system.

3.4 Scheduler

The Scheduler is a true real-time task scheduler. Each task

is a descriptor pairing a procedure identifier with invoca-
tion specific parameters. Associated with each procedure
in the Procedure Description knowledge bases consulted
by the Metaplanner are data characterizing the procedure's
anticipated execution time; the Scheduler uses these ex-
ecution time predictions together with the Metaplanner-
specified criticality value assigned to each task to build an
execution schedule for all pending tasks, including both the
set of tasks dequeued from the Scheduler Input Queue at
Scheduler invocation time and the set of previously queued
but unexecuted pending tasks already waiting in the Sched-
uler's Task Queue.

The Scheduling policy is as follows. Each task has a crit-
icality, nominally inherited from the parent goal that led to
the task's elaboration by the Metaplanner. 2 Most tasks also

2In some cases, as described above, a task will be pre-
sented to the Scheduler for scheduling and subsequent ex-
ecution by another task. The creating task is permitted to
specify any of several criticalities for the created task: that
of the creating task, that of some goal to which the created
task is intended to bear a causal relationship, or the same

have a real-time deadline; these are real-time (RT) tasks,
vs. the non-real-time (non-RT) tasks, which lack execution
deadlines. (It is required that an estimate of execution time
be available for tasks having execution deadlines.)

Real-time tasks generally are scheduled to execute be-
fore non-real-time tasks, to ensure that real-time execution
criteria are satisfied. 3 The RT tasks are scheduled for ex-

ecution (i.e. mapped onto an execution timeline) based on
their required completion time and anticipated execution
time. Where two tasks qualify for the same timeslot, crit-

icality is used as a tie-breaker. Once such a schedule has
been constructed for RT tasks, non-RT tasks are scheduled;

where possible, they are fitted into the interstices between
already-scbeduled RT tasks, and if no such space exists in
the schedule, they are appended to the end of the schedule
in order of decreasing criticality.

At the completion of a Scheduler invocation, the Task
Queue is a total ordering of tasks ordered by scheduled start
time. The first task in the Task Queue is the next task to
e.xec_e.

3.$ Executor

The Executor dequeues the next task to execute and assigns
the processor to it. Execution is non-preemptive, i.e. the
task executes to completion once initiated. From SA's per-
spective, all task executions in the current prototype are
atomic in the sense that they always run to completion and
cannot be interrupted by (for example) intervening mes-
sage deliveries or other internal or external events. The
question of whether to implement task interruption was
considered early in the process of designing the Metacon-
troller. Analysis of both options showed that task inter-
ruption would vastly increase the complexity of the goal
and task reasoning process. We therefore chose to define
atomic tasks.

3.6 Data and Knowledge Bases

In addition to the major components of the architecture as
described above, SA also contains several data and knowl-

edge bases. They include:

• The Metarules knowledge base, from which the Meta-
planner obtains its rules for planning task executions
based on the current contact (as evidenced by trig-
gered events) and the current goal set.

criticality as some other identified task in which the new
class is intended to have equivalence-class membership for
criticality proposes. Under most circumstances, however,
we would expect that tasks will be elaborated by the meta-
planner and will inherit their criticality from the parent goal
that they are being executed to satisfy.

3This follows from the principal that SA is a real-time
problem-solving system. If satisfaction of execution dead-

!'rues were subordinated to some other metric, e.g. task
'priority," then SA would be a conventional non-real-time
problem-solving system. In a real-time system, the dead-
lines are incontrovertibly more important than other per-
formance metrics.

324

The SA Goals knowledge base, containing the assess-
ment goals that will employed by the metalevel to per-
form metaplanning.

The SA Domain Database, comprising the collection
of facts, assertions, and hypotheses about the under-
sea world that axe used to produce assessments. This
includes all knowledge concerning the current set of
hypothetical contacts in the external world.

The Situation Assessment Procedure Description
database, containing a description of each computa-
tional procedure that SA's Executor can execute to
manipulate domain-level data (i.e. data about vessels,
contacts, acoustics, etc.).

The Control Procedure Description
database, wherein reside corresponding descriptions
of each metalevel computational procedure (those that
manipulate input messages, task queues, etc.).

The Situation Assessment Procedures database, con-
taining the bodies of executable domain-level proce-
dures, such as procedures for performing correlation
ofcontacts.

The Control Procedures database, containing the ac-
tual bodies of executable metalevel procedures.

3.7 Truth Maintenance Substrate

SA uses a truthmaintenance system O'MS) to ensure con-
sistency between goals. The SA TMS is an extension of the
JTMS (Justification-based TMS) [6; 2] approach, in which
justifications are represented as Home clauses. The JTMS
has been extended to establish and propagate goal critical-
ities. This capability is essential for reasoning about the
importance of goals, and in turn, of tasks.

The TMS represents two types of"assertions": facts and
goals. Facts are statements of belief that ultimately justify
one or more goals, goals are a state SA is trying to achieve
or a question to answer. Similarly justifications are of two
types: fact and goal (meaning that the TMS justifies the
in-ness of a fact or goal).

A fact justification conjoins a set of facts and goals (i.e.
assertions) and represents boolean support for the conse-
quent fact when the conjunction is true. A goal justifica-
tion conjoins a set of facts and goals to represent boolean
support but also represents the importance (criticality) that
support wants to lend to the consequent goal. Each goal

•justification hasan associated criticality.

The criticalityofagoalisassignedinoneoftwoways.
Ifthegoalisanassumedgoal(i.e.,apremise)acriticalityis

assignedatthetimeoftheassumption.Othergoalsarede-
rivedgoals, and obtaintheircriticality from the criticality
of justifications. The criticality of the supporting justifi-
cation is used as the criticality of the goal. When a goal
has more than one justification, the one with the maximum
criticality is used to assign the criticality.

4 Test Results

TheMetacontroller was tested as part of the SOAS proto-
type. Tests were performed in a distributed computing en-
vironment consisting of networked workstations. Each ma-
jor component of SOAS, e.g., the SA component, resided
on a single workstation and communicated with other com-
ponents on other workstations through a communication
substrate based on ISIS. An additional workstation on the
network supported a simulator which exercised the SOAS
prototype by providing simulations of: sensor data, data
on ownship (e.g., ownship course and speed), and envi-
ronmental data such as sound-velocity profiles. This dis-
tributed system was tested against several contact-behavior
scenarios by personnel with both computer science and
Navy operational experience.

Through the use of the Metacontroller, SA was able to
meet about 80% of its real-time deadlines in the midst of
executing optional tasks opportunistically. We expect that
the 80% figure could be improved upon through improved
use of the existing metacontroller, for example, by replac-
ing unbounded-time algorithms with any-time versions.

SA uses about 30 metarules and typically maintains goal
sets containing between 20 and 100 goals. The metaeon-
troller runs efficiently. Approximately 5% of the total pro-
cessing time typical SA scenarios is spent in metacontroller
processing. The metacontroller is implemented in Com-
mon Lisp; we plan to port the metacontroller to the C lan-
guage.

$ Conclusions

The development of the Metacontroller demonstrates two
points:

• A feasible method for integrating do-
main and resource-based reasoning about control of
a knowledge-based procedure.

• The practicality of creating solutions to difficult AI
system design problems by coupling several well-
known AI techniques.

An obvious problem in building real-time AI systems is
the fact that control oftbe system typically depends on two
largely unrelated factors:

• Time deadlines and related computing resource con-
straints.

• The control decisions inherent in the problem-solving
domain.

Each of these factors has been the subject of investiga-
tion, individually. The first factor has been studied in some
depth [5]. Concepts such as any-time algorithms and the
use of interrupts in AI tasks have been investigated [3; 7].
The second factor has led to well-known concepts such as
blackboard systems and goal-based reasoning. Although
the general problem of integrating these two factors has
been discussed (e.g., [4]), there appear to be few published
sources describing detailed mechanisms for such combined
reasoning. "Dypically,much oftbe expertise in a given prob-
lem domain has to do with reasoning about what to do next.

325

This inference process cannot be discarded when real-time
consWaints are imposed. Instead, it must be integrated with
the complimentary process of reasoning about deadlines.
The Metacontroller design provides a mechanism to do this
integration.

The second point demonstrated, that several AI tech-
niques can be usefully coupled, is important in advancing
the success of AI as an engineering discipline. The Meta-
controller combines:

• Rule-based reasoning to form goals,

• Goal-directed processing,

• TMS-based criticality propagation,

• Real-time scheduler.

The noncontrol elements of SA integrate additional tech-
niques as well.

While each of these techniques is based on well-known
concepts, its not typical to find them coupled in a single
integrated function. More frequently, we see systems built
using one or two techniques (e.g., a diagnostic system built
around a TMS [1]). Such homogeneous designs are appro-
priate for basic research in AI techniques and for engineer-
ing applications where they happen to work. However, our
experience has led us to believe that the engineering poten-
tial of the existing body of AI research cannot be properly
exploited unless multiple techniques are integrated. In the
case of the MetacontIoiler, we showed that integration of

multiple techniques produced very promising results on a
problem which appeared beyond the means of any single
techniques with which the authors are familiar.

[7] Sharma, D.D., and Narayan, Srini, An Architecture for
Intelligent Task Interruption, Proceedings of the Work-
shop on Real-Time Artificial Intelligence Problems, De-
troit, MI, August 20, 1989.

References

[1] de Kleer, Johan, and Williams, Brian, Diagnos-
ing multiple faults, Artificial Intelligence, 32:97-130,
1987.

[2] Doyle, Jon, A Truth Maintenance System, Aru'.fwial
Intelligence, 12:231-272, 1979.

[3] Erman, Le_ D. ,Ed., Intelligent Real-Time Problem
Solving: Workshop Report, Santa Cruz, CA, November
8 and 9, 1989.

[4] Hayes-Roth, B., Washington, R., Hewett, R., Hewett,
M., Seiver, A, Intelligent Real-Time Monitoring and

Control, Technical Report No. KSL 89-05, Knowledge
Systems Laboratory, Stanford University, Stanford, CA.

[5] Laffey, Thomas J., COX, Preston A., Schrnidt, James
L., Kao, Simon N., Read, Jackson Y., Real-Time
Knowledge-Based Systems, AI Magazine, Spring,
1988, Vol. 9, No. 1, pp. 27-45.

[6] McAllester, David, A Three-Valued Truth Mainte-
nance System S.B. Thesis, Depamnent of Electrical En-

gineering, MIT, Cambridge, MA, 1978.

-326

